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Abstract 
 

Nowadays, grid and peer-to-peer (p2p) 
technologies have become popular solutions for large-
scale resource sharing and system integration. For e-
science workflow systems, grid is a convenient way of 
constructing new services by composing existing 
services, while p2p is an effective approach to 
eliminate the performance bottlenecks and enhance the 
scalability of the systems. However, existing workflow 
systems focus either on p2p or grid environments and 
therefore cannot take advantage of both technologies. 
It is desirable to incorporate the two technologies in 
workflow systems. SwinDeW-G (Swinburne 
Decentralised Workflow for Grid) is a novel hybrid 
decentralised workflow management system 
facilitating both grid and p2p technologies. It is 
derived from the former p2p based SwinDeW system 
but redeveloped as grid services with communications 
between peers conducted in a p2p fashion. This paper 
describes the system design and functions of the 
runtime environment of SwinDeW-G. 

Index Terms: Grid Workflows, Peer-to-Peer 
Workflows, E-Science, Coordination, Decentralisation 
 
1. Introduction 
 

Recently, grid computing [11] and peer-to-peer 
(p2p) technology [1] are two popular solutions for 
resource sharing and system integration which are 
desirable for sophisticated e-science workflows. 
Accordingly, there is a demand to investigate grid 
and/or p2p workflow systems. A grid workflow can be 
defined as the composition of grid application services 
which execute on heterogeneous and distributed 
resources in a well-defined order to accomplish a 
specific goal [21]. A p2p workflow, on the other hand, 
facilitates p2p technologies to workflow for direct 

communication and cooperation among relevant peers 
[19]. Both systems have their respective advantages. 

Compared with traditional workflow systems, the 
grid workflow systems have some advantages [15]: (1) 
ability to build dynamic applications which orchestrate 
distributed resources; (2) utilisation of resources that 
are located in a particular domain to increase 
throughput or reduce execution costs; (3) execution 
spanning multiple administrative domains to obtain 
specific processing capabilities; and (4) integration of 
multiple teams involved in managing of different parts 
of the experiment workflow thus promoting inter-
organisational collaborations. 

The p2p workflow systems also have some merits 
[19]. They abandon the centralised data repository and 
control engine and fulfil the whole workflow functions 
by distributing both data and control. Thus the 
performance bottlenecks are likely eliminated and the 
system scalability can be greatly enhanced. 

Inherited from our exiting work on the p2p based 
workflow system SwinDeW (Swinburne Decentralised 
Workflow) [19], SwinDeW-G (SwinDeW for Grid) 
also uses XPDL (XML Process Definition Language1) 
for workflow definition. However, this paper focuses 
on the SwinDeW-G runtime environment. The specific 
requirements of the SwinDeW-G runtime environment 
are as follows. First, in order to take advantages of 
both grid computing and p2p technology, it is desirable 
that SwinDeW-G is developed as a p2p based grid 
workflow. Second, given the existence of SwinDeW, it 
is desirable that SwinDeW-G is realised in a cost 
effective manner, i.e., not developed from scratch, 
rather, it should be based on p2p based SwinDeW but 
ported to the grid environment. 

The rest of the paper is organised as follows. In the 
next section, some typical grid workflow systems are 

                                                           
1 http://www.wfmc.org/standards/xpdl.htm 
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discussed. Section 3 illustrates the system design 
which combines grid and p2p technologies. Section 4 
then demonstrates the system functions of SwinDeW-
G. After that, a case study is used to illuminate how the 
system works in Section 5. Finally, Section 6 
concludes the paper and outlines future work. 
 
2. Related Work 
 

Our former SwinDeW described in [19] is a typical 
p2p based workflow system where the detailed related 
work of p2p workflow systems can be found there. 
Therefore, in this section, we concentrate on related 
work for grid workflow systems as it is the primary 
focus of this paper.  

With the increasing interest in grid workflow, many 
grid workflow systems emerge in recent years [20]. 
Here we choose some grid workflow systems, namely, 
Gridbus [4], Pegasus [9], Taverna [13], GrADS [3], 
ASKALON [10], GridAnt [17], Karajan [18], Triana 
[6], GridFlow [7] and Kepler [2], to demonstrate the 
main characteristics of current research outcomes and 
compare them with SwinDeW-G [16]. 

As for system installation, Gridbus and ASKALON 
only need Globus Toolkit2 , while Taverna, Karajan 
and Kepler only need Java. Pegasus, GrADS and 
GridAnt need other toolkits such as Condor’s 
DAGman [12], autopilot [14] and Apache Ant3, as well 
as Globus Toolkit. Tirana and GridFlow need their 
own platforms to run. Using popular toolkit brings 
better adaptability while using own toolkits brings 
more flexibility. Considering its complex runtime 
environment, SwinDeW-G chooses the more general 
Globus Toolkit and Java to develop on. 

As far as QoS (quality of service) constraints are 
concerned, most grid workflow systems mentioned 
above do not support this feature. Gridbus supports 
QoS constraints including task deadline and cost 
minimisation, GrADS and GridFlow mainly use 
estimated application execution time, and ASKALON 
supports constrains and properties specified by users or 
predefined. Right now, SwinDeW-G supports QoS 
constraints based on task deadline. 

When it comes to fault tolerance, at the task level, 
Gridbus, Taverna, ASKALON, Karajan, GridFlow and 
Kepler use alternate resource; Taverna, ASKALON 
and Karajan use retry; GrADS uses rescheduling. At 
the workflow level, rescue workflow is used by 
ASKALON and Kepler; user-defined exception 
handling is used by Karajan and Kepler. Pegasus, 
GridAnt and Triana use their particular strategies 
                                                           
2 http://www.globus.org/toolkit/ 
3 http://ant.apatche.org 

respectively. As a comparison, SwinDeW-G uses 
effective task-level temporal constraint verification for 
fault tolerance. 

As for the architecture of the workflow scheduling 
infrastructure, Pegasus, Taverna, GrADS, GridAnt, 
Karajan and Kepler use a centralised architecture; 
Gridbus and GridFlow use a hierarchical architecture; 
ASKALON and Triana use a decentralised architecture. 
It is believed that centralised schemes produce more 
efficient schedules and decentralised schemes have 
better scalabilities, while hierarchical schemes are their 
compromises. Derived from former SwinDeW, 
SwinDeW-G uses a decentralised scheme for 
workflow scheduling. 

As for scheduling strategies, Pegasus, Taverna, 
GrADS, Triana and GridFlow support performance-
driven strategies; Gridbus supports market-driven 
strategy; only ASKALON supports both performance-
driven and market-driven strategies. A performance-
driven strategy can achieve optimal execution 
performance by mapping workflow tasks onto 
resources according to specific strategies and the 
market-driven strategy tries to allocate resources for 
workflow tasks according to market models. 
SwinDeW-G aims at using a performance-driven 
strategy to achieve an overall load balance of the 
whole system via distributing tasks to least loaded 
neighbours. 

For intermediate data movement, Gridbus, Taverna 
and ASKALON use a centralised approach; Pegasus 
uses mediated approach; GridAnt and Karajan use 
user-directed approach; GrADS, Triana and GridFlow 
use p2p approach. Kepler supports all approaches 
mentioned above. The centralised approaches are 
easier to implement and mediated approaches are more 
scalable and suitable for applications which need to 
keep intermediate data for later use, while p2p 
approaches are more suitable for those applications 
which involve with large-scale data flow. Designed to 
support large-scale workflows, SwinDeW-G chooses 
the p2p approaches not only at the data level for such 
as intermediate data movement but also at the control 
level for such as workflow execution. 

In overall terms, although the most existing grid 
workflow systems mentioned above can support the 
execution of grid workflows and have their respective 
characteristics, they do not fully facilitate the p2p 
technology to their runtime tools. While we port 
SwinDeW to grid environment as SwinDeW-G in a 
cost effective fashion, we retain its p2p feature to 
increase the system efficiency and enhance the system 
scalability and at the same time inherit the advantages 
of the grid technology. 
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Figure 1: Physical Network Layout of SwinGrid Environment 

 
3. System Design 
 

SwinDeW-G is running on a grid environment 
called SwinGrid. An overall picture of SwinGrid is 
depicted in Figure 1 which contains many grid nodes 
distributed in different places. Each grid node contains 
many computers including high performance PCs 
and/or supercomputers composed of significant 
number of computing units. The primary hosting nodes 
include the Swinburne CITR (Centre for Information 
Technology Research) Node, Swinburne ESR 
(Enterprise Systems Research laboratory) Node, 
Swinburne Astrophysics Supercomputer Node, and 
Beihang CROWN (China R&D environment Over 
Wide-area Network) [8] Node in China. They are 
running Linux, GT (Globus Toolkit) 4.04 or CROWN 
grid toolkit 2.5 where CROWN is an extension of GT 
4.04 with more middleware, hence compatible with GT 
4.04. Besides, the CROWN Node is also connected to 
some other nodes such as those in Hong Kong 
University of Science and Technology and University 
of Leeds in UK. The Swinburne Astrophysics 
Supercomputer Node is cooperating with such as 
APAC (Australian Partnership for Advanced 
Computing), VPAC (Victorian Partnership for 
Advanced Computing) and so on. Currently, 
SwinDeW-G is deployed at all primary hosting nodes. 
In SwinDeW-G, a grid workflow is executed by 
different peers that may be distributed at different grid 
nodes. As shown in Figure 1, each grid node can have 
a number of peers, and each peer can be simply viewed 
as a grid service. 

 
Figure 2: Architecture of SwinDeW-G 

As we mentioned before, SwinDeW-G is a p2p 
based grid workflow system that enables workflows to 
be executed over a grid environment using direct p2p 
communications among peers. This is achieved by 
wrapping SwinDeW-G peers inside grid services and 
deploying them as grid middleware applications. This 
relationship can be seen in Figure 2. Once deployed, 
SwinDeW-G peers will search for and connect with 
other SwinDeW-G peers. After that, the peers use p2p 
to exchange various information required to execute a 
workflow. 

Unlike SwinDeW, a SwinDeW-G peer runs as a 
grid service along with other grid services. However, it 
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communicates with other peers via JXTA4, a platform 
for p2p communication. As Figure 3 shows, a 
SwinDeW-G peer consists of the following 
components: 

Figure 3: Architecture of SwinDeW-G Peer 

• The Task Component manages the workflow 
tasks. It has three main functions. First, it provides 
necessary information to the Flow Component for 
scheduling and stores received tasks to Task 
Repository. Second, it determines the appropriate 
time to start, execute and terminate a particular 
task according to the capability. A capability in 
SwinDeW-G is an object encapsulating rules with 
a role in workflow processes, which include the 
responsibility of this role, usage scenarios of this 
role, application-related constraints of each 
scenario (input, allowable operations, output, etc.), 
and so on. The resources that a workflow task 
instance may require are stored in the Resource 
Repository.  

• The Flow Component interacts with all other 
modules. First, it receives the workflows definition 
and then creates the instance definition. Second, it 
receives tasks from other peers or redistributes 
them. Third, it decides whether to pass a task to 
the Task Component to execute locally or 
distribute it to other peers. The decision is made 
according to the capabilities and load of itself and 
other neighbours. And finally, it makes sure that 
all executions conform to the data dependency and 
control dependency of the process definitions 
which are stored in the Process Repository and the 
Task Repository.  

• The Group Manager is the interface between the 
peer and JXTA. In JXTA, all communications are 
conducted in terms of peer group, and the Group 
Manager maintains the peer groups the peer has 
joined. The information of the peer groups and the 

                                                           
4 http://www.sun.com/software/jxta/ 

peers in them is stored in the Peer Repository. 
While a SwinDeW-G peer is implemented as a 
grid service, all direct communications between 
peers are conducted via p2p. Peers communicate 
to distribute information of their current state and 
messages for process control such as heartbeat, 
process distribution, process enactment etc. 

• The User component is the interface between the 
corresponding workflow users and the workflow 
environment. In SwinDeW-G, its primary function 
is to allow users to interfere with the workflow 
instances when exceptions occur. 

Globus Toolkit serves as the grid service container 
of SwinDeW-G. Not only a SwinDeW-G peer itself is 
a grid service located inside Globus Toolkit, the 
capabilities which are needed to execute certain tasks 
are also in forms of grid services that the system can 
access. That means when a task is assigned to a peer, 
Globus Toolkit will be used to provide the required 
capability as grid service for that task. 

 
4. System Functions 
 

This section describes the system functions of 
workflow execution in SwinDeW-G. First, we 
illustrate how a workflow process is defined; second, 
we demonstrate how the peers are managed; third, we 
address how tasks of a workflow instance are 
organised; and finally, we describe how the instance is 
executed. 
 
4.1. Process Definition 
 

In SwinDeW-G, the process definition is specified 
in the XPDL workflow language. In general, a 
SwinDeW-G process can be represented by a two-tuple 
process notation P (Process-ID; Task-Set). Further, a 
task can be described as a four-tuple task notation T 
(Process-ID; Task-ID; Transition-Restriction-Set; 
Extended-Attribute-Set). 

For processes, Process-ID is the unique identifier of 
the process in the workflow system, and Task-Set is 
the set of tasks which constitutes the process. For tasks, 
Process-ID is the identifier of the process in the 
workflow system to which the task belongs, and Task-
ID is the unique identifier of the task in the context of 
the process.  

Transition-Restriction-Set is a set of workflow 
constraints. Each constraint represents an edge of the 
directed graph of the workflow process. Each edge can 
be described as a three-tuple notation R (Mode, 
Condition, Other-Task-ID). When Mode is ‘join’, it 
represents that this task is the end point on the flow 
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edge. In this circumstance, Condition can be such as 
‘and’ or ‘or’. If it is ‘and’, the task will not be 
initialised until all ‘join’ conditions become true, and if 
it is ‘or’, the task will be instanced as long as any ‘join’ 
condition becomes true. When Mode is ‘split’, it 
represents that this task is the beginning point on the 
flow edge. Again, Condition can be such as ‘and’ or 
‘or’. If it is ‘and’, the subsequent tasks can be executed 
in parallel, and if it is ‘or’, a follow up task will be 
selected from the subsequent task list according to the 
condition in order. Finally, Other-Task-ID is the 
identifier of the task on the other end of the flow edge. 

Extended-Attribute-Set is the collection of optional 
attributes depending on the application. Each attribute 
can be described as (Name, Value). The most 
important attribute in a task is the attribute named 
capability, the value of which indicates one of the 
required capabilities needed to execute the task. 
 
4.2. Peer Management 
 

Unlike normal grid services, SwinDeW-G is always 
considered dynamic due to the joining and leaving of 
peers. Peer management derives mostly from former 
SwinDeW. Its main function is maintaining a list of 
current neighbours which is essential for distribution, 
scheduling and execution of workflows. In detail, peer 
management has to handle the following: 
• Peer join 

In SwinDeW-G, Peer Groups are organised by 
capabilities defined in a workflow process. When a 
new peer joins SwinDeW-G, it joins a base group 
which contains all the peers in the network, regardless 
of their capabilities. In this base group, each peer will 
advertise in the group, so when a peer is searching for 
another peer, it will search through the advertisements 
to find the peer it wants. Then the new peer will try to 
join some groups according to each of its capabilities. 
If the group already exists, the peer simply joins it; 
otherwise, it creates a new group and joins it as creator.  

When a peer joins an existing group successfully, it 
will send an advertisement message to the group. Other 
peers which are already in this group will respond the 
advertisement and pass the related process definition 
data to the new peer. Also, the newly joined peer is 
added to these peers’ list of neighbours automatically. 
Thus the new peer can merge into the workflow system 
and be able to execute certain tasks immediately.  
• Peer search  

In SwinDeW-G, each peer has respective 
capabilities. When a task is distributed to a peer, it 
checks if it has the capability to execute it first. If the 
peer can execute the task, then the task will be passed 

to the Task Component for execution; else it will check 
if one of its neighbours has the requested capability. If 
there is one, it will redirect this task to that neighbour; 
otherwise it will invoke a global search to find if any 
peer has the required capability, which is rare in 
general. 

The process of global search is described as follows. 
First, in every peer group it joined, including the base 
group of SwinDeW-G which contains all SwinDeW-G 
peers, the peer sends a search message to all other 
peers. For every peer who received the message, if it 
knows that some peers have the required capability, it 
will return the information of those peers to the sender. 
The process will stop when either the peers with 
required capability are found or no responses are 
received for a certain period of time, which usually 
means exception that no peer in the system has the 
required capability. 
• Peer leave 

A SwinDeW-G peer may leave the system at any 
time either explicitly or implicitly. The system has to 
respond to these events and keep the system running 
properly. In the former situation, the peer who is going 
to leave will inform the neighbours in its neighbour list 
about its leave. When its neighbours receive the 
message, they will remove the peer from their 
neighbour list accordingly. In the later circumstance, 
the discovery mechanism depends on the heartbeat 
messages which are gossiped periodically in the system 
to indicate that the peer who sent them is still alive. So, 
if a peer left the system unexpectedly, its heartbeat 
messages will not be heard by its neighbours anymore. 
When a peer has not heard one of its neighbours for a 
period of time, it will consider this neighbour to be 
inactive and will remove it from its neighbour list. In 
both circumstances, the tasks which are relevant to this 
peer have to be rescheduled accordingly by finding a 
replacement peer with the same procedure of task 
instantiation described in Section 4.3 next. 
 
4.3. Task Instantiation 
 

In workflow systems, a process can be started by a 
request or a coming event. The process flowchart of 
SwinDeW-G can be described as follows. 

The peer will start a process instance when it 
receives an instantiation message. In this occasion, the 
peer will get the process ID from the message and 
searches it in its Process Repository. If the process can 
be found, the peer will check if there is an instance of 
the process already running. If there is not, it will 
create one.  
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In the second step, the peer will get the ID of the 
start task and find if there is an instance of the task 
already running. If there is not, it will create one.  

Once the new task instance is instantiated, the peer 
will check the execution condition. The task can be 
executed if one of the following conditions is met: (1) 
the join condition is “and” and all the task’s 
predecessors have been done where sequential 
execution is a special case; (2) the join condition is 
“or” and one of the task’s predecessors has been done; 
(3) The task is the start task. 

If a task can be executed, the peer will try to 
instantiate its subsequent tasks. In fact, for each 
subsequent task, it will send a message to one of its 
neighbours who has the required capability. It should 
be addressed that this peer may or may not be the peer 
on which the task will be executed. When all 
subsequent tasks are distributed, it will notify all 
predecessors that the task has been instantiated via 
sending them specific messages. 

When a peer receives the initiating message, it will 
search the least loaded peer among itself and its 
neighbours who have the necessary capability that 
needs to execute the task. To find which peer has the 
least load, Globus Toolkit can be facilitated to obtain 
the needed information which includes current CPU 
load, service availabilities etc. Once the least loaded 
peer has been found, it will then send a message to the 
peer to start the task.  

If a task has no successors, it would be the last task. 
When such a task has been done, the peer will send a 
message to the enacting peer to start execution of the 
process. 
 
4.4. Instance Execution 
 

In SwinDeW-G, whether a task can be executed on 
a peer depends on two conditions: the data condition 
and the control condition. Most workflow tasks need 
some input data to start. The data are normally the 
output of its predecessor(s). Similarly, the task also 
generates some results as the input of its successor(s). 
Only all necessary data are collected can a task be 
started. This is called data condition.  

As described earlier, a task can be executed only 
after some relevant tasks have been finished. This is 
called control condition. Unlike traditional centralised 
workflow system, this control consistency is achieved 
by collaborations among SwinDeW-G peers. Several 
control messages which are transferred between these 
peers are as follows: 
• Predecessor message 

This message is used by a predecessor task to notify 
its successor task(s) whether a task is completed or still 
being executing. When a successor task receives this 
message, it will modify the status of the corresponding 
predecessor task and check if it itself can be enacted. 
• Successor message 

This message is used by a successor task to notify 
its predecessor task(s) whether the task has been 
enacted or not. When a predecessor task receives this 
message, it will update the status of the corresponding 
successor task and check if it itself can be enacted. 
• Successor instance message 

This message is used to tell its predecessor(s) that 
an instance of this task has been created. When a peer 
receives this message, it sets the sender as the 
successor neighbour of the task instance. 
 

5. Case Study 
 

In this section, we facilitate a case study to illustrate 
how SwinDeW-G supports the execution of p2p based 
grid workflows.  

At first, we introduce some background of this case 
study. In reality, complex scientific processes are 
normally time constrained, hence temporal verification 
is needed. The tasks at which we conduct the 
verification are called checkpoints. In grid workflow 
systems, a checkpoint selection strategy (CSS) is 
responsible for selecting checkpoints for conducting 
temporal verification.  

This section discusses a case which is realised on 
SwinDeW-G. The simulation is the comparison of 
several checkpoint selection strategies where the 
details can be found in [5]. In this paper, we only focus 
on how SwinDeW-G supports these grid workflows.  

The SwinGrid grid environment has already been 
described earlier in Section 3. Figure 4 shows a partial 
workflow process that was used in the simulations and 
how it is distributed to the grid environment. The 
complete process for simulation consists of over 1000 
activities but for the sake of simplicity only 7 of them 
are shown. The workflow process executes tasks in a 
partial order. There is a branch at activity an1 where 
some tasks are executed in parallel.  

When this workflow process is executed each task 
is assigned to a peer. This assignment is based on 
which peer is suitable to execute the task. To be 
suitable the peer must first be capable of executing that 
task and not be busy with other tasks. Once all the 
activities have been assigned to a peer the workflow 
process is then executed from start to end. Each peer 
that has a task assigned to it will communicate with the 
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other peers so that the workflow process executes in the expected order. 

  
Figure 4: Workflow Process Simulation Environment

The result shows that SwinDeW-G can support 
complicated workflows which need intensive 
computation because it uses grid to execute workflow 
tasks, and its p2p based communication can reduce the 
overall traffic for increasing the efficiency and 
improving the scalability. 

It has been demonstrated that the test workflows 
can run on SwinDeW-G properly and many useful 
outcomes can be drawn. It can be concluded that 
SwinDeW-G is a suitable p2p based grid workflow 
environment that can support sophisticated e-science 
applications effectively. In summary, our primary 
requirements of SwinDeW-G described in Section 1 
are successfully achieved. 
 
6. Conclusions and Future Work 
 

In this paper, we have presented the runtime 
environment of SwinDeW-G (Swinburne 
Decentralised Workflow for Grid) which is a novel 
peer-to-peer (p2p) based grid workflow system 
incorporating p2p and grid technologies for taking 
advantages of both. The SwinDeW-G runtime 
environment is realised based on former SwinDeW 
p2p based workflow system as grid services to reduce 
the development cost. The utilisation of the grid 
technology provides more power to handle 
sophisticated e-science workflow applications while 
the facilitation of the p2p technology improves the 
performance and increases the scalability of the 
system.  

In the future, SwinDeW-G still needs further 
improvement. On one hand, load balancing would 

occur when multiple peers have the same capability. 
However, the task scheduling is now primarily 
performed at the task instantiation stage and static in 
the current system which is insufficient. New 
scheduling algorithms will be developed to balance the 
load which is of course in a dynamic and distributed 
manner. On the other hand, monitoring is not 
implemented in the current version. However, it would 
be desirable to be able to monitor the status of the 
workflows. In addition, SwinDeW-G will also be 
compared with other grid workflow systems. 
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