
Peer-to-Peer Based Grid Workflow Runtime Environment of SwinDeW-G

Yun Yang1, Ke Liu2, 1, Jinjun Chen1, Joël Lignier1, Hai Jin2

 1- Faculty of Information and
Communication Technologies

Swinburne University of Technology
Hawthorn, Melbourne, Australia 3122

{yyang, kliu, jchen, jlignier}@ict.swin.edu.au

2- School of Computer Science & Technology
Huazhong University of Science and

Technology
Wuhan, Hubei, China 430022

hjin@hust.edu.cn

Abstract

Nowadays, grid and peer-to-peer (p2p)
technologies have become popular solutions for large-
scale resource sharing and system integration. For e-
science workflow systems, grid is a convenient way of
constructing new services by composing existing
services, while p2p is an effective approach to
eliminate the performance bottlenecks and enhance the
scalability of the systems. However, existing workflow
systems focus either on p2p or grid environments and
therefore cannot take advantage of both technologies.
It is desirable to incorporate the two technologies in
workflow systems. SwinDeW-G (Swinburne
Decentralised Workflow for Grid) is a novel hybrid
decentralised workflow management system
facilitating both grid and p2p technologies. It is
derived from the former p2p based SwinDeW system
but redeveloped as grid services with communications
between peers conducted in a p2p fashion. This paper
describes the system design and functions of the
runtime environment of SwinDeW-G.

Index Terms: Grid Workflows, Peer-to-Peer
Workflows, E-Science, Coordination, Decentralisation

1. Introduction

Recently, grid computing [11] and peer-to-peer
(p2p) technology [1] are two popular solutions for
resource sharing and system integration which are
desirable for sophisticated e-science workflows.
Accordingly, there is a demand to investigate grid
and/or p2p workflow systems. A grid workflow can be
defined as the composition of grid application services
which execute on heterogeneous and distributed
resources in a well-defined order to accomplish a
specific goal [21]. A p2p workflow, on the other hand,
facilitates p2p technologies to workflow for direct

communication and cooperation among relevant peers
[19]. Both systems have their respective advantages.

Compared with traditional workflow systems, the
grid workflow systems have some advantages [15]: (1)
ability to build dynamic applications which orchestrate
distributed resources; (2) utilisation of resources that
are located in a particular domain to increase
throughput or reduce execution costs; (3) execution
spanning multiple administrative domains to obtain
specific processing capabilities; and (4) integration of
multiple teams involved in managing of different parts
of the experiment workflow thus promoting inter-
organisational collaborations.

The p2p workflow systems also have some merits
[19]. They abandon the centralised data repository and
control engine and fulfil the whole workflow functions
by distributing both data and control. Thus the
performance bottlenecks are likely eliminated and the
system scalability can be greatly enhanced.

Inherited from our exiting work on the p2p based
workflow system SwinDeW (Swinburne Decentralised
Workflow) [19], SwinDeW-G (SwinDeW for Grid)
also uses XPDL (XML Process Definition Language1)
for workflow definition. However, this paper focuses
on the SwinDeW-G runtime environment. The specific
requirements of the SwinDeW-G runtime environment
are as follows. First, in order to take advantages of
both grid computing and p2p technology, it is desirable
that SwinDeW-G is developed as a p2p based grid
workflow. Second, given the existence of SwinDeW, it
is desirable that SwinDeW-G is realised in a cost
effective manner, i.e., not developed from scratch,
rather, it should be based on p2p based SwinDeW but
ported to the grid environment.

The rest of the paper is organised as follows. In the
next section, some typical grid workflow systems are

1 http://www.wfmc.org/standards/xpdl.htm

Third IEEE International Conference on e-Science and Grid Computing

0-7695-3064-8/07 $25.00 © 2007 IEEE
DOI 10.1109/e-Science.2007.2

51

Third IEEE International Conference on e-Science and Grid Computing

0-7695-3064-8/07 $25.00 © 2007 IEEE
DOI 10.1109/e-Science.2007.2

51

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 22:40 from IEEE Xplore. Restrictions apply.

discussed. Section 3 illustrates the system design
which combines grid and p2p technologies. Section 4
then demonstrates the system functions of SwinDeW-
G. After that, a case study is used to illuminate how the
system works in Section 5. Finally, Section 6
concludes the paper and outlines future work.

2. Related Work

Our former SwinDeW described in [19] is a typical
p2p based workflow system where the detailed related
work of p2p workflow systems can be found there.
Therefore, in this section, we concentrate on related
work for grid workflow systems as it is the primary
focus of this paper.

With the increasing interest in grid workflow, many
grid workflow systems emerge in recent years [20].
Here we choose some grid workflow systems, namely,
Gridbus [4], Pegasus [9], Taverna [13], GrADS [3],
ASKALON [10], GridAnt [17], Karajan [18], Triana
[6], GridFlow [7] and Kepler [2], to demonstrate the
main characteristics of current research outcomes and
compare them with SwinDeW-G [16].

As for system installation, Gridbus and ASKALON
only need Globus Toolkit2 , while Taverna, Karajan
and Kepler only need Java. Pegasus, GrADS and
GridAnt need other toolkits such as Condor’s
DAGman [12], autopilot [14] and Apache Ant3, as well
as Globus Toolkit. Tirana and GridFlow need their
own platforms to run. Using popular toolkit brings
better adaptability while using own toolkits brings
more flexibility. Considering its complex runtime
environment, SwinDeW-G chooses the more general
Globus Toolkit and Java to develop on.

As far as QoS (quality of service) constraints are
concerned, most grid workflow systems mentioned
above do not support this feature. Gridbus supports
QoS constraints including task deadline and cost
minimisation, GrADS and GridFlow mainly use
estimated application execution time, and ASKALON
supports constrains and properties specified by users or
predefined. Right now, SwinDeW-G supports QoS
constraints based on task deadline.

When it comes to fault tolerance, at the task level,
Gridbus, Taverna, ASKALON, Karajan, GridFlow and
Kepler use alternate resource; Taverna, ASKALON
and Karajan use retry; GrADS uses rescheduling. At
the workflow level, rescue workflow is used by
ASKALON and Kepler; user-defined exception
handling is used by Karajan and Kepler. Pegasus,
GridAnt and Triana use their particular strategies

2 http://www.globus.org/toolkit/
3 http://ant.apatche.org

respectively. As a comparison, SwinDeW-G uses
effective task-level temporal constraint verification for
fault tolerance.

As for the architecture of the workflow scheduling
infrastructure, Pegasus, Taverna, GrADS, GridAnt,
Karajan and Kepler use a centralised architecture;
Gridbus and GridFlow use a hierarchical architecture;
ASKALON and Triana use a decentralised architecture.
It is believed that centralised schemes produce more
efficient schedules and decentralised schemes have
better scalabilities, while hierarchical schemes are their
compromises. Derived from former SwinDeW,
SwinDeW-G uses a decentralised scheme for
workflow scheduling.

As for scheduling strategies, Pegasus, Taverna,
GrADS, Triana and GridFlow support performance-
driven strategies; Gridbus supports market-driven
strategy; only ASKALON supports both performance-
driven and market-driven strategies. A performance-
driven strategy can achieve optimal execution
performance by mapping workflow tasks onto
resources according to specific strategies and the
market-driven strategy tries to allocate resources for
workflow tasks according to market models.
SwinDeW-G aims at using a performance-driven
strategy to achieve an overall load balance of the
whole system via distributing tasks to least loaded
neighbours.

For intermediate data movement, Gridbus, Taverna
and ASKALON use a centralised approach; Pegasus
uses mediated approach; GridAnt and Karajan use
user-directed approach; GrADS, Triana and GridFlow
use p2p approach. Kepler supports all approaches
mentioned above. The centralised approaches are
easier to implement and mediated approaches are more
scalable and suitable for applications which need to
keep intermediate data for later use, while p2p
approaches are more suitable for those applications
which involve with large-scale data flow. Designed to
support large-scale workflows, SwinDeW-G chooses
the p2p approaches not only at the data level for such
as intermediate data movement but also at the control
level for such as workflow execution.

In overall terms, although the most existing grid
workflow systems mentioned above can support the
execution of grid workflows and have their respective
characteristics, they do not fully facilitate the p2p
technology to their runtime tools. While we port
SwinDeW to grid environment as SwinDeW-G in a
cost effective fashion, we retain its p2p feature to
increase the system efficiency and enhance the system
scalability and at the same time inherit the advantages
of the grid technology.

5252

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 22:40 from IEEE Xplore. Restrictions apply.

Figure 1: Physical Network Layout of SwinGrid Environment

3. System Design

SwinDeW-G is running on a grid environment
called SwinGrid. An overall picture of SwinGrid is
depicted in Figure 1 which contains many grid nodes
distributed in different places. Each grid node contains
many computers including high performance PCs
and/or supercomputers composed of significant
number of computing units. The primary hosting nodes
include the Swinburne CITR (Centre for Information
Technology Research) Node, Swinburne ESR
(Enterprise Systems Research laboratory) Node,
Swinburne Astrophysics Supercomputer Node, and
Beihang CROWN (China R&D environment Over
Wide-area Network) [8] Node in China. They are
running Linux, GT (Globus Toolkit) 4.04 or CROWN
grid toolkit 2.5 where CROWN is an extension of GT
4.04 with more middleware, hence compatible with GT
4.04. Besides, the CROWN Node is also connected to
some other nodes such as those in Hong Kong
University of Science and Technology and University
of Leeds in UK. The Swinburne Astrophysics
Supercomputer Node is cooperating with such as
APAC (Australian Partnership for Advanced
Computing), VPAC (Victorian Partnership for
Advanced Computing) and so on. Currently,
SwinDeW-G is deployed at all primary hosting nodes.
In SwinDeW-G, a grid workflow is executed by
different peers that may be distributed at different grid
nodes. As shown in Figure 1, each grid node can have
a number of peers, and each peer can be simply viewed
as a grid service.

Figure 2: Architecture of SwinDeW-G

As we mentioned before, SwinDeW-G is a p2p
based grid workflow system that enables workflows to
be executed over a grid environment using direct p2p
communications among peers. This is achieved by
wrapping SwinDeW-G peers inside grid services and
deploying them as grid middleware applications. This
relationship can be seen in Figure 2. Once deployed,
SwinDeW-G peers will search for and connect with
other SwinDeW-G peers. After that, the peers use p2p
to exchange various information required to execute a
workflow.

Unlike SwinDeW, a SwinDeW-G peer runs as a
grid service along with other grid services. However, it

5353

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 22:40 from IEEE Xplore. Restrictions apply.

communicates with other peers via JXTA4, a platform
for p2p communication. As Figure 3 shows, a
SwinDeW-G peer consists of the following
components:

Figure 3: Architecture of SwinDeW-G Peer

• The Task Component manages the workflow
tasks. It has three main functions. First, it provides
necessary information to the Flow Component for
scheduling and stores received tasks to Task
Repository. Second, it determines the appropriate
time to start, execute and terminate a particular
task according to the capability. A capability in
SwinDeW-G is an object encapsulating rules with
a role in workflow processes, which include the
responsibility of this role, usage scenarios of this
role, application-related constraints of each
scenario (input, allowable operations, output, etc.),
and so on. The resources that a workflow task
instance may require are stored in the Resource
Repository.

• The Flow Component interacts with all other
modules. First, it receives the workflows definition
and then creates the instance definition. Second, it
receives tasks from other peers or redistributes
them. Third, it decides whether to pass a task to
the Task Component to execute locally or
distribute it to other peers. The decision is made
according to the capabilities and load of itself and
other neighbours. And finally, it makes sure that
all executions conform to the data dependency and
control dependency of the process definitions
which are stored in the Process Repository and the
Task Repository.

• The Group Manager is the interface between the
peer and JXTA. In JXTA, all communications are
conducted in terms of peer group, and the Group
Manager maintains the peer groups the peer has
joined. The information of the peer groups and the

4 http://www.sun.com/software/jxta/

peers in them is stored in the Peer Repository.
While a SwinDeW-G peer is implemented as a
grid service, all direct communications between
peers are conducted via p2p. Peers communicate
to distribute information of their current state and
messages for process control such as heartbeat,
process distribution, process enactment etc.

• The User component is the interface between the
corresponding workflow users and the workflow
environment. In SwinDeW-G, its primary function
is to allow users to interfere with the workflow
instances when exceptions occur.

Globus Toolkit serves as the grid service container
of SwinDeW-G. Not only a SwinDeW-G peer itself is
a grid service located inside Globus Toolkit, the
capabilities which are needed to execute certain tasks
are also in forms of grid services that the system can
access. That means when a task is assigned to a peer,
Globus Toolkit will be used to provide the required
capability as grid service for that task.

4. System Functions

This section describes the system functions of
workflow execution in SwinDeW-G. First, we
illustrate how a workflow process is defined; second,
we demonstrate how the peers are managed; third, we
address how tasks of a workflow instance are
organised; and finally, we describe how the instance is
executed.

4.1. Process Definition

In SwinDeW-G, the process definition is specified
in the XPDL workflow language. In general, a
SwinDeW-G process can be represented by a two-tuple
process notation P (Process-ID; Task-Set). Further, a
task can be described as a four-tuple task notation T
(Process-ID; Task-ID; Transition-Restriction-Set;
Extended-Attribute-Set).

For processes, Process-ID is the unique identifier of
the process in the workflow system, and Task-Set is
the set of tasks which constitutes the process. For tasks,
Process-ID is the identifier of the process in the
workflow system to which the task belongs, and Task-
ID is the unique identifier of the task in the context of
the process.

Transition-Restriction-Set is a set of workflow
constraints. Each constraint represents an edge of the
directed graph of the workflow process. Each edge can
be described as a three-tuple notation R (Mode,
Condition, Other-Task-ID). When Mode is ‘join’, it
represents that this task is the end point on the flow

5454

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 22:40 from IEEE Xplore. Restrictions apply.

edge. In this circumstance, Condition can be such as
‘and’ or ‘or’. If it is ‘and’, the task will not be
initialised until all ‘join’ conditions become true, and if
it is ‘or’, the task will be instanced as long as any ‘join’
condition becomes true. When Mode is ‘split’, it
represents that this task is the beginning point on the
flow edge. Again, Condition can be such as ‘and’ or
‘or’. If it is ‘and’, the subsequent tasks can be executed
in parallel, and if it is ‘or’, a follow up task will be
selected from the subsequent task list according to the
condition in order. Finally, Other-Task-ID is the
identifier of the task on the other end of the flow edge.

Extended-Attribute-Set is the collection of optional
attributes depending on the application. Each attribute
can be described as (Name, Value). The most
important attribute in a task is the attribute named
capability, the value of which indicates one of the
required capabilities needed to execute the task.

4.2. Peer Management

Unlike normal grid services, SwinDeW-G is always
considered dynamic due to the joining and leaving of
peers. Peer management derives mostly from former
SwinDeW. Its main function is maintaining a list of
current neighbours which is essential for distribution,
scheduling and execution of workflows. In detail, peer
management has to handle the following:
• Peer join

In SwinDeW-G, Peer Groups are organised by
capabilities defined in a workflow process. When a
new peer joins SwinDeW-G, it joins a base group
which contains all the peers in the network, regardless
of their capabilities. In this base group, each peer will
advertise in the group, so when a peer is searching for
another peer, it will search through the advertisements
to find the peer it wants. Then the new peer will try to
join some groups according to each of its capabilities.
If the group already exists, the peer simply joins it;
otherwise, it creates a new group and joins it as creator.

When a peer joins an existing group successfully, it
will send an advertisement message to the group. Other
peers which are already in this group will respond the
advertisement and pass the related process definition
data to the new peer. Also, the newly joined peer is
added to these peers’ list of neighbours automatically.
Thus the new peer can merge into the workflow system
and be able to execute certain tasks immediately.
• Peer search

In SwinDeW-G, each peer has respective
capabilities. When a task is distributed to a peer, it
checks if it has the capability to execute it first. If the
peer can execute the task, then the task will be passed

to the Task Component for execution; else it will check
if one of its neighbours has the requested capability. If
there is one, it will redirect this task to that neighbour;
otherwise it will invoke a global search to find if any
peer has the required capability, which is rare in
general.

The process of global search is described as follows.
First, in every peer group it joined, including the base
group of SwinDeW-G which contains all SwinDeW-G
peers, the peer sends a search message to all other
peers. For every peer who received the message, if it
knows that some peers have the required capability, it
will return the information of those peers to the sender.
The process will stop when either the peers with
required capability are found or no responses are
received for a certain period of time, which usually
means exception that no peer in the system has the
required capability.
• Peer leave

A SwinDeW-G peer may leave the system at any
time either explicitly or implicitly. The system has to
respond to these events and keep the system running
properly. In the former situation, the peer who is going
to leave will inform the neighbours in its neighbour list
about its leave. When its neighbours receive the
message, they will remove the peer from their
neighbour list accordingly. In the later circumstance,
the discovery mechanism depends on the heartbeat
messages which are gossiped periodically in the system
to indicate that the peer who sent them is still alive. So,
if a peer left the system unexpectedly, its heartbeat
messages will not be heard by its neighbours anymore.
When a peer has not heard one of its neighbours for a
period of time, it will consider this neighbour to be
inactive and will remove it from its neighbour list. In
both circumstances, the tasks which are relevant to this
peer have to be rescheduled accordingly by finding a
replacement peer with the same procedure of task
instantiation described in Section 4.3 next.

4.3. Task Instantiation

In workflow systems, a process can be started by a
request or a coming event. The process flowchart of
SwinDeW-G can be described as follows.

The peer will start a process instance when it
receives an instantiation message. In this occasion, the
peer will get the process ID from the message and
searches it in its Process Repository. If the process can
be found, the peer will check if there is an instance of
the process already running. If there is not, it will
create one.

5555

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 22:40 from IEEE Xplore. Restrictions apply.

In the second step, the peer will get the ID of the
start task and find if there is an instance of the task
already running. If there is not, it will create one.

Once the new task instance is instantiated, the peer
will check the execution condition. The task can be
executed if one of the following conditions is met: (1)
the join condition is “and” and all the task’s
predecessors have been done where sequential
execution is a special case; (2) the join condition is
“or” and one of the task’s predecessors has been done;
(3) The task is the start task.

If a task can be executed, the peer will try to
instantiate its subsequent tasks. In fact, for each
subsequent task, it will send a message to one of its
neighbours who has the required capability. It should
be addressed that this peer may or may not be the peer
on which the task will be executed. When all
subsequent tasks are distributed, it will notify all
predecessors that the task has been instantiated via
sending them specific messages.

When a peer receives the initiating message, it will
search the least loaded peer among itself and its
neighbours who have the necessary capability that
needs to execute the task. To find which peer has the
least load, Globus Toolkit can be facilitated to obtain
the needed information which includes current CPU
load, service availabilities etc. Once the least loaded
peer has been found, it will then send a message to the
peer to start the task.

If a task has no successors, it would be the last task.
When such a task has been done, the peer will send a
message to the enacting peer to start execution of the
process.

4.4. Instance Execution

In SwinDeW-G, whether a task can be executed on
a peer depends on two conditions: the data condition
and the control condition. Most workflow tasks need
some input data to start. The data are normally the
output of its predecessor(s). Similarly, the task also
generates some results as the input of its successor(s).
Only all necessary data are collected can a task be
started. This is called data condition.

As described earlier, a task can be executed only
after some relevant tasks have been finished. This is
called control condition. Unlike traditional centralised
workflow system, this control consistency is achieved
by collaborations among SwinDeW-G peers. Several
control messages which are transferred between these
peers are as follows:
• Predecessor message

This message is used by a predecessor task to notify
its successor task(s) whether a task is completed or still
being executing. When a successor task receives this
message, it will modify the status of the corresponding
predecessor task and check if it itself can be enacted.
• Successor message

This message is used by a successor task to notify
its predecessor task(s) whether the task has been
enacted or not. When a predecessor task receives this
message, it will update the status of the corresponding
successor task and check if it itself can be enacted.
• Successor instance message

This message is used to tell its predecessor(s) that
an instance of this task has been created. When a peer
receives this message, it sets the sender as the
successor neighbour of the task instance.

5. Case Study

In this section, we facilitate a case study to illustrate
how SwinDeW-G supports the execution of p2p based
grid workflows.

At first, we introduce some background of this case
study. In reality, complex scientific processes are
normally time constrained, hence temporal verification
is needed. The tasks at which we conduct the
verification are called checkpoints. In grid workflow
systems, a checkpoint selection strategy (CSS) is
responsible for selecting checkpoints for conducting
temporal verification.

This section discusses a case which is realised on
SwinDeW-G. The simulation is the comparison of
several checkpoint selection strategies where the
details can be found in [5]. In this paper, we only focus
on how SwinDeW-G supports these grid workflows.

The SwinGrid grid environment has already been
described earlier in Section 3. Figure 4 shows a partial
workflow process that was used in the simulations and
how it is distributed to the grid environment. The
complete process for simulation consists of over 1000
activities but for the sake of simplicity only 7 of them
are shown. The workflow process executes tasks in a
partial order. There is a branch at activity an1 where
some tasks are executed in parallel.

When this workflow process is executed each task
is assigned to a peer. This assignment is based on
which peer is suitable to execute the task. To be
suitable the peer must first be capable of executing that
task and not be busy with other tasks. Once all the
activities have been assigned to a peer the workflow
process is then executed from start to end. Each peer
that has a task assigned to it will communicate with the

5656

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 22:40 from IEEE Xplore. Restrictions apply.

other peers so that the workflow process executes in the expected order.

Figure 4: Workflow Process Simulation Environment

The result shows that SwinDeW-G can support
complicated workflows which need intensive
computation because it uses grid to execute workflow
tasks, and its p2p based communication can reduce the
overall traffic for increasing the efficiency and
improving the scalability.

It has been demonstrated that the test workflows
can run on SwinDeW-G properly and many useful
outcomes can be drawn. It can be concluded that
SwinDeW-G is a suitable p2p based grid workflow
environment that can support sophisticated e-science
applications effectively. In summary, our primary
requirements of SwinDeW-G described in Section 1
are successfully achieved.

6. Conclusions and Future Work

In this paper, we have presented the runtime
environment of SwinDeW-G (Swinburne
Decentralised Workflow for Grid) which is a novel
peer-to-peer (p2p) based grid workflow system
incorporating p2p and grid technologies for taking
advantages of both. The SwinDeW-G runtime
environment is realised based on former SwinDeW
p2p based workflow system as grid services to reduce
the development cost. The utilisation of the grid
technology provides more power to handle
sophisticated e-science workflow applications while
the facilitation of the p2p technology improves the
performance and increases the scalability of the
system.

In the future, SwinDeW-G still needs further
improvement. On one hand, load balancing would

occur when multiple peers have the same capability.
However, the task scheduling is now primarily
performed at the task instantiation stage and static in
the current system which is insufficient. New
scheduling algorithms will be developed to balance the
load which is of course in a dynamic and distributed
manner. On the other hand, monitoring is not
implemented in the current version. However, it would
be desirable to be able to monitor the status of the
workflows. In addition, SwinDeW-G will also be
compared with other grid workflow systems.

Acknowledgement

The research work reported in this paper is partly
supported by Australian Research Council under
Discovery Grant DP0663841, Linkage Grant
LP0669660 and by Swinburne Dean’s Collaborative
Grants Scheme 2007-2008.

References

[1] K. Aberer and M. Hauswirth, “Peer-to-peer information
systems: Concepts and models, state-of-the-art, and future
systems”, Proc. of 8th European Software Engineering Conf.
(ESEC) and 9th ACM SIGSOFT Symp. Foundations Software
Engineering (FSE-9), Vienna, Austria, Sep. 2001, pp. 326–
327.

[2] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher
and S. Mock, “Kepler: An Extensible System for Design and
Execution of Scientific Workflows”, Proc. of 16th
International Conference on Scientific and Statistical

5757

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 22:40 from IEEE Xplore. Restrictions apply.

Database Management (SSDBM 2004), Santorini Island,
Greece, June 2004, pp. 423-424.

[3] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D.
Gannon, L. Johnsson, K. Kennedy, C. Kesselman, J. Mellor-
Crummey, D. Reed, L. Torczon and R. Wolski, “The GrADS
Project: Software Support for High-Level Grid Application
Development”, International Journal of High Performance
Computing Applications (JHPCA), 15(4):327-344, Winter
2001.

[4] R. Buyya and S. Venugopal, “The Gridbus Toolkit for
Service Oriented Grid and Utility Computing: An Overview
and Status Report”, Proc. of 1st IEEE International
Workshop on Grid Economics and Business Models
(GECON 2004), Seoul, Korea, Apr. 2004, pp. 19-36.

[5] J. Chen and Y. Yang, “Adaptive Selection of Necessary
and Sufficient Checkpoints for Dynamic Verification of
Temporal Constraints in Grid Workflow Systems”, ACM
Transactions on Autonomous and Adaptive Systems, 2(2):
Article 6, June 2007 (http://www.acm.org/pubs/taas/)

[6] D. Churches, G. Gombas, A. Harrison, J. Maassen, C.
Robinson, M. Shields, I. Taylor and I. Wang, “Programming
Scientific and Distributed Workflow with Triana Services”,
Concurrency and Computation: Practice and Experience,
18(10):1021–1037, Dec. 2005.

[7] J. Coa, S. Jarvis, S. Saini, and G. Nudd, “GridFlow:
Workflow Managament for Grod Computing”, Proc. of 3rd
International Symposium on Cluster Computing and the Grid,
2003, (CCGrid 2003), Tokyo, Japan, May 2003, pp. 198-205.

[8] CROWN Team 2006, CROWN portal, http://www.
crown.org.cn/en/, accessed on July 1, 2007.

[9] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta
and K. Vahi, “Mapping Abstract Complex Workflows onto
Grid Environments”, Journal of Grid Computing, 1:25-39,
2003.

[10] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C.
Seragiotto Jr. and H. L. Truong, “ASKALON: A Tool Set for
Cluster and Grid Computing”, Concurrency and
Computation: Practice and Experience, 17:143-169, 2005.

[11] I. Foster and C. Kesselman (editors), The Grid:
Blueprint for a New Computing Infrastructure, Morgan
Kaufmann Publishers, USA, 1998.

[12] J. Frey, T. Tannenbaum, I. Foster, M. Livny and S.
Tuecke, “Condor-G: A Computation Management Agent for
Multi-Institutional Grids”, Cluster Computing, 5: 237-246,
2002.

[13] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M.
Greenwood, T. Carver and K. Glover, M.R. Pocock, A.
Wipat, and P. Li, “Taverna: A Tool for the Composition and
Enactment of Bioinformatics Workflows”, Bioinformatics,
20(17):3045-3054, 2004.

[14] D. Reed and R. L. Ribler, “Performance Analysis and
Visualization”, In I. Foster and C. Kesselman, editors, The
Grid: Blueprint for a New Computing Infrastructure, pp.
367–394, Morgan Kaufmann Publishers, USA, 1998.

[15] D.P. Spooner, J. Cao, S. A. Jarvis, L. He and G. R.
Nudd, “Performance-aware Workflow Management for Grid
Computing”, The Computer Journal, 48(3): 347-357, 2004.

[16] SwinDeW-G Team 2006, System Architecture of
SwinDeW-G, http://www.ict.swin.edu.au/personal/jchen/
SwinDeW-G/System_Architecture.pdf, accessed on Sept. 17,
2007.

[17] G. von Laszewski, K. Amin, M. Hategan, N. J. Zaluzec,
S. Hampton and A. Rossi, “GridAnt: A Client-Controllable
Grid Workflow System”, Proc. of 37th Hawaii International
Conference on System Sciences (HICSS-37), Hawaii, USA,
Jan. 2004, pp. 210-219.

[18] G. von Laszewski and M. Hategan, “Java CoG Kit
Karajan/GridAnt Workflow Guide”, Technical Report,
Argonne National Laboratory, Argonne, IL, USA, 2005.

[19] J. Yan, Y. Yang and G. K. Raikundalia, “SwinDeW - A
Peer-to-peer based Decentralized Workflow Management
System”, IEEE Transactions on Systems, Man and
Cybernetics, Part A, 36(5):922-935, 2006.

[20] J. Yu and R. Buyya, “A Taxonomy of Workflow
Management Systems for Grid Computing”, Journal of Grid
Computing, 3:171-200, Sept. 2005.

[21] J. Yu and R. Buyya, “A Novel Architecture for
Realizing Grid Workflow using Tuple Spaces“, Proc. of 5th
IEEE/ACM International Workshop on Grid Computing
(GRID 2004), Pittsburgh, USA, Nov. 2004, pp. 119-128.

5858

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 22:40 from IEEE Xplore. Restrictions apply.

